GENERAL

- Cloud droplets are very small (diameter of about 0.02 mm), and do not fall very fast.
- In order to form precipitation, the cloud droplets must somehow grow heavy enough to fall.
 - 0.1 mm is considered to be the minimum size of a precipitation droplet.
 - A typical raindrop has a diameter of 2 mm.
- The cloud droplet must somehow grow from .02 mm to 2 mm. This represents an increase of a million times in volume!
- This growth is accomplished through two main ways, depending on the temperature of the clouds.

WARM CLOUD PROCESS

- Also called the collision-coalescence process
- For the collision-coalescence process to work, at least a few cloud droplets must be as large as 20 microns (.02 mm).
- These larger drops fall and collide with smaller droplets. Some of the smaller droplets will just bounce off, but some will stick, or coalesce.
- The drop continues to grow through collisions. As it reaches a size of greater than 4 or 5 mm, it becomes unstable and breaks apart into smaller droplets. These smaller droplets can continue the process of collision with even smaller droplets, and can continue growing.
- The collision-coalescence process is the main means of precipitation formation in the Tropics, as well as in stratus clouds.

COLD CLOUD PROCESS

- Also called the Bergeron process
- Liquid water exists in the atmosphere at temperatures as low as –40°C.
- Freezing doesn’t occur unless there are freezing nuclei present.
Freezing nuclei are not very abundant.

The saturation vapor pressure over ice is less than that over liquid water.

Once ice forms in the presence of supercooled liquid water, the ice crystals will grow at the expense of the cloud droplets.

The ice crystals continue to grow until they are heavy enough to fall to the ground.

If the temperature at the ground is near freezing, the snowflakes will reach the ground as snow.

If the temperature at the ground is above about 39 degrees F, the snowflakes will have melted to form rain.

Outside of the Tropics the Bergeron process is an important mechanism for forming precipitation.

TYPES OF PRECIPITATION

- **Rain** – Drops of water falling from a cloud, and having a diameter of greater than 0.5 mm

- **Drizzle** – Liquid water drops having a diameter of less than 0.5 mm. You can often tell the difference between rain and drizzle because drizzle usually doesn’t cause ripples in standing water puddles.

- **Snow** – Ice crystals or aggregates of ice crystals. The shape of snowflakes varies with the temperature at which they are formed.

- **Sleet (ice pellets)** – Sleet is formed when raindrops fall through a colder layer of air and freeze into ice pellets.
 - If greater than 5 mm in diameter it is called hail.
 - Sleet is smooth, hard, and transparent.

- **Graupel (snow pellets)** – Graupel is irregular, opaque, and crunchy (soft).
 - If greater than 5 mm in diameter it is called hail.

- **Glaze** – Also called freezing rain, glaze forms when supercooled raindrops strike an object and instantly freeze on impact.

- **Hail** – Frozen precipitation greater than 5 mm in diameter. Hail begins as a snowflake that partially or completely melts, and then refreezes. But, instead of immediately falling to the ground, it gets caught in an updraft and can make
several trips up and down through the cloud, each time accumulating more ice.
Hail is only formed in very strong thunderstorms (cumulonimbus clouds).
- If less than 5 mm in diameter it is either sleet (ice pellets) or graupel (snow pellets) depending on its consistency and shape.
- U.S. record (by weight) hailstone fell in Vivian, SD on July 23, 2010. It was 8.0 inches in diameter and weighed nearly 2 pounds (1 pound, 15 ounces) with a circumference of 18.62 inches. (The record for diameter is 18.75 inches, Aurora, NE, June 22, 2003).

U.S. record hailstone (by weight). NOAA Photo used with permission.

- **Rime** – Forms in a manner similar to glaze, only it is caused by the freezing of supercooled cloud droplets rather than supercooled raindrops. It often forms feathery ice crystals on trees.

MEASURING PRECIPITATION
- Rainfall is measured in inches (or millimeters) per hour. Any flat bottomed, vertically sided container can be used as a rain gage.
- Rainfall rate is classified as
 - Trace – less than 0.01 inches per hour
 - Light – between 0.01 and 0.1 inches per hour
 - Moderate – between 0.1 and 0.3 inches per hour
 - Heavy – greater than 0.3 inches per hour
Snow measurements are categorized in one of several ways. Here are the definitions used by the National Weather Service’s Surface Observing Program:

- **Snowfall**: Maximum amount of new snow that has fallen since the previous observation.
- **Snow Depth**: The total depth of snow (including any ice) on the ground at the normal observation time. The snow depth includes new snow that has fallen combined with snow already on the ground.
- **Snowfall Water Content (also known as Water Equivalent)**: The water content of new snowfall since the previous day’s observation.
- **Snow Depth Water Content**: The water content of new and old snow on the ground measured by taking a core sample.

Snow observations are usually taken either once every 24 hours by volunteer (cooperative) observers, or every 6 hours at airports or other official observation sites.

When measuring snowfall, a white Masonite snow measuring board should be placed on a flat, level surface, away from trees, buildings or other obstructions.

- After every observation (6 or 24 hours) the snow measuring board should be swept clean.
- The total snowfall for a specific snow event is the sum of all the observations that were taken during the event.

Snow depth (remember that snow depth and snowfall are not the same thing) is measured by taking multiple measurement and averaging the readings. This mitigates the effects of different ground covers, slopes, shady vs sunny regions, etc.

Snowfall water content and snow depth water content can both be measured by taking core samples and melting to see how much liquid is obtained. Snowfall water content can also be measured based on the amount of snow that has fallen into a precipitation gauge.

On average, 10 inches of snow is equivalent to 1 inch of rain. But, heavier snow has more water, and light, powdery snow has less water.

- The temperature at which the snowflakes formed determines how much water they contain.
Radar can also be used to estimate precipitation rates and amounts.

WEATHER MODIFICATION

- Attempts have been made to “seed” cold clouds with dry ice or silver iodide crystals in order to enhance the Bergeron process. This is done to either enhance precipitation, or to disperse fog. It can be somewhat successful on a small scale (such as trying to clear fog at an airport).
- Warm clouds are seeded with salt particles in an effort to get a few large drops to form to initiate the collision-coalescence process.
- Inadvertent weather modification occurs when man’s activities seed clouds. There is evidence that this is occurring near industrial areas.
- The jury is still out on how effective cloud seeding is. There are also legal and ethical issues involved.