2. Assume a population of cloud droplets follows the gamma distribution with
 \(a = 4.53 \times 10^{-24} \text{ m}^{-6} \) and \(b = 2.35 \times 10^{5} \text{ m}^{-1} \).

a. What is the number density of the droplets (in cm\(^{-3}\))?

 Answer: \(698 \text{ cm}^{-3} \)

b. What is the liquid water content of the cloud (in g/m\(^3\))?
 Answer: \(1.69 \text{ g/m}^3 \)

c. What is the surface area density of the drops (in cm\(^2\)/m\(^3\)) (i.e., what is the total surface area of all the drops contained in a cubic meter of air?)
 Answer: \(4770 \text{ cm}^2/\text{m}^3 \)

d. What is the mean drop diameter (in \(\mu \text{m} \))?
 Answer: \(12.8 \mu \text{m} \)

e. What is the mean distance between drops (in mm).
 Answer: \(0.624 \text{ mm} \)