The AMS Space Weather Short Course: **Space Weather: What is it and who needs to know about it?**, will be held on 22 January 2011 preceding the 92nd AMS Annual Meeting in New Orleans, LA. Preliminary programs, registration, hotel, and general information will be posted on the AMS Web site (www.ametsoc.org) in mid-September 2011.

Space weather affects many aspects of modern society. Professionals in the atmospheric science disciplines will benefit from understanding its sources and how it affects national infrastructure and aspects of daily life. Radio frequency communications, high-flying airliners, and national power grids are a few of the high-tech systems affected by space weather phenomena. Local and national planners, as well as system designers must account for the possible disruptions and interference caused by electromagnetic waves and charged particles spewing from our Sun and arriving from deep space daily. Common system elements such as Global Positioning System receivers and cell phones react to some solar emissions, degrading service for a time.

The short course will describe the sources of space weather disturbances (solar flares, coronal mass ejections, energetic particles, ionospheric storms) and their potential to disrupt regional and global systems. It will describe the developing models at NOAA’s National Space Weather Prediction Center (SWPC), the federal agency charged with warning the public of potentially damaging space weather events. It will also cover concepts relating space weather to terrestrial weather.

The goal of the course is to provide sufficient background information be able to: Define space weather; know the primary sources of space weather and which regions of Earth’s atmosphere and geospace are affected by space weather; know the characteristics times of space weather disturbances; be able to describe which systems and signals are affected by space weather disturbances and be able to link these to the NOAA Space Weather Scales; be able to read NOAA SWPC forecast and warnings; describe links between terrestrial and space weather.

The target audience is meteorologists who potentially receive, use and convey space weather information to the public, and or, their clients. This course will be presented as “101 level” offering geared toward (a) an audience of meteorologists who are seeking a background in space weather phenomena and impacts; (b) government and academic meteorologists whose work extends to the upper atmosphere. Undergraduate and graduate students wishing to learn more about space weather and seeking to enter the discipline are also encouraged to attend.

The course consists of one day of interactive lectures. The course will be instructed by experts drawn from academia, and national research organizations and operational agencies.
Prof Delores Knipp, University of Colorado. She will be joined by:
Mr Bob Rutledge Chief Forecaster, NOAA Space Weather Prediction Center
Mr McArthur Jones, Aerospace Engineering, University of Colorado, Boulder

A luncheon will be provided during the short course.
“Hands on” material will be provided on a course CD and, most likely, via the internet.

Attendees will benefit from viewing the UCAR COMET material on introduction to space weather before the short course. This material introduces vocabulary unique to space weather and space environment. (SpaceWeather Welcome--No Quiz http://www.meted.ucar.edu/topics_spacewx.php).

For more information please contact Delores Knipp at CU Aerospace Engineering, 626 Engineering Center Office Tower, 429 UCB, Boulder, CO 80909 (email: delores.knipp@colorado.edu).